Extraction of optical constants and thickness of nanometre scale TiO$_2$ film

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 Chinese Phys. 14 2335

(http://iopscience.iop.org/1009-1963/14/11/032)

The Table of Contents and more related content is available

Download details:
IP Address: 202.120.54.134
The article was downloaded on 11/04/2010 at 06:20

Please note that terms and conditions apply.
Extraction of optical constants and thickness of nanometre scale TiO$_2$ film

Yang Ying-Ge(杨莺歌), Liu Pi-Jun(刘丕均),
Wang Ying(王英), and Zhang Ya-Fei(张亚非)†

National Key Laboratory of Nano/Micro Fabrication Technology,
Bio-X DNA Computer Consortium,
Key Laboratory for Thin Film and Microfabrication of Ministry of Education,
Institute of Micro and Nano Science and Technology, Shanghai Jiaotong University, Shanghai 200030, China

(Received 4 March 2005; revised manuscript received 28 July 2005)

TiO$_2$ thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.

Keywords: TiO$_2$ thin films, pointwise constrained optimization approach, constrained nonlinear programming, optical constants, parameters extraction

PACC: 7820D, 7865P, 7360F

Much attention has been paid to titanium dioxide films in the past for their chemical stability, high refractive index, and high dielectric constant, which allow for their use as components in optoelectronic devices, sensors, and photocatalysts. Many deposition techniques have been used to prepare them, such as chemical vapour deposition, evaporative, reactive magnetron sputtering, ion beam techniques, and sol–gel processes. In this paper, the optical properties of sputtered TiO$_2$ films on glass substrates are investigated. The dispersions of the real part, n, and the imaginary part, k, of the complex refractive index have been deduced by fitting the theoretically generated spectra to the simulated optical dispersion from the experimental transmittance spectra. A modified pointwise constrained optimization approach, double-step optimization, was used to extract the film thickness and optical constants. The new calculation method can save calculation time and enhance precision.

For most modern applications of thin dielectric or semiconductor films, the optical properties of interest cover the photon energy around fundamental absorption edge of the material. Optical transmis-
sion provides accurate and rapid information on the spectral range where the material goes from opaque to some degree of transparency.$^{[7,8]}$ As a consequence, the problem of extracting the optical constants, $n(\lambda) = n(\lambda) + ik(\lambda)$, and the thickness ($d$) of thin films from transmission data only, is very important. Several methods were reported to solve this problem, such as a pointwise constrained optimization approach$^{[9]}$ and an unconstrained minimization algorithm.$^{[10]}$ The two methods were deduced to a nonlinear programming problem, and both were successful in extracting d and n from transmission spectra of the computer-made film and the real one. When the above methods are used to extract parameters from the transmission of real thin film, the solution cannot be always available because of the rather complex large-scale nonlinear programming. Here a more effective procedure was introduced to enhance the efficiency of the parameters extraction method.

Firstly, we regard the problem as nonlinear programming:

$$\text{minimize } \sum_{\lambda} [T_{\text{exp}}(\lambda) - T(d, n(\lambda), k(\lambda))]^2 \quad (1),$$

*Project supported by Shanghai Municipal Commission for Science and Technology (Grant No 03DZ14025) and National Basic Research Program of China (Grant No 2006CB300406).
†Corresponding author. E-mail: yfzhang@sjtu.edu.cn

http://www.iop.org/journals/cp
then we subject it to physical constraints.

In Eq.(1) T_{exp} is the transmission spectra of the thin film, and $T(d, n, k)$ is the theoretical transmission calculated by the formula.[8] The physical constraints are from Ref.[9],

\[
d_{\text{min}} \leq d \leq d_{\text{max}}, \quad n_{\text{min}} \leq n \leq n_{\text{max}},
\]

\[
0 \leq k \leq k_{\text{max}} \quad \text{for all } \lambda.
\]

\[
n_{i+1} \leq n_i, \quad k_{i+1} \leq k_i. \quad (2a)
\]

\[
2n_i - n_{i-1} - n_{i+1} \leq 0,
\]

\[
2k_i - k_{i-1} - k_{i+1} \leq 0. \quad (2c)
\]

Given $n(\lambda)$, $k(\lambda)$ and d for all values of wavelength λ, the theoretical transmission T is obtained. The optimization procedure is used to find the best data of three unknown d, $n(\lambda)$, $k(\lambda)$, which should satisfy Eq.(1). But for every optimization procedure, the fitting result is very sensitive to the initial values of d, $n(\lambda)$, $k(\lambda)$,[8] and the experimental data shows that bad initial values will bring about much more difficulties in parameters extraction. So, we present a double-step optimization method with which calculating time can be saved and the fitting precision is enhanced. Firstly, only the constrained condition (2a) is inserted to Eq.(1), and the retrieval parameters calculated from the nonlinear programming optimization procedure are taken as the initial values. Secondly, the full physical condition (2a~2c) and the initial values are substituted into Eq.(1), and the optimization procedure is repeated, while a constrained nonlinear programming algorithm runs with the last optimized parameters as the initial input values until the best parameters are obtained or the preset precision is reached.

TiO$_2$ thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system with a base pressure 8×10^{-3}Pa. The target is titanium with a purity of 99.9% and a diameter of 60mm. The separation between the target and substrates is about 5cm. Glass substrates were firstly cleaned by standard cleaning procedures. A mixture of Ar and O$_2$ gases was used as sputtering gas. Throughout this work, the flow rates of Ar and O$_2$ was kept at 1:2. The sputtering pressure was kept at 2Pa. The films were prepared at rf power of 300W. The temperature of the substrate was maintained at 250$^\circ$C and the deposition time was in a range from 10 to 60min. For convenience of description, the films are called film A, B, C and D according to the different deposition time, respectively. The x-ray diffraction (XRD) pattern of the film D is shown in Fig.1. The film shows good crystalline phase.

![Fig.1. XRD pattern of the film D.](image)

In the parameters extraction calculation, the two algorithms, the single-step and double-step optimization methods were compared with each other, and the results are listed in Table 1 and Fig.2. It can be seen from Table 1 that the values of the extracted thickness d of the films A to C obtained from the two methods are very close, but the calculated times are much different. Except for film B, the time elapsed by using the double-step method is nearly one tenth of that by using the single-step one. Unfortunately, the single-step optimization procedure cannot find good fitting result for some complex case, such as film D. Compared with the result obtained by the single-step method, better result can be obtained by the double-step method, as shown in Fig.2.

<table>
<thead>
<tr>
<th>Film</th>
<th>Depositing time/min</th>
<th>$d_{\text{extracted}}$/nm</th>
<th>Error</th>
<th>Time/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>40</td>
<td>0.0220</td>
<td>3770</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>54.5</td>
<td>0.0120</td>
<td>4586</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>92.7</td>
<td>0.0605</td>
<td>2048</td>
</tr>
<tr>
<td>D</td>
<td>60</td>
<td>161</td>
<td>0.682</td>
<td>4578</td>
</tr>
</tbody>
</table>

Table 1. Thickness extraction.
The double-step and the experimental transmission spectra for the four samples are plotted in Fig. 3. Good agreements were obtained expect for the film D. From the above analysis, we can see that the double-step optimization is better than the single-step one, and the former excels in calculation time and precision.

As Ernesto et al[10] pointed out, the pointwise constrained optimization approach can retrieve the correct thickness and optical constants of the film, and it does not rely on the existence of the interference fringes. From Fig. 3 and Table 1 it can be seen that the thickness of the film ranges from 40 to 300 nm. With increasing thickness, interference fringes appear and the highest precision can be obtained at a thickness of 54.5 nm. The optical constants of the four TiO$_2$ films, n and k, vary with increasing wavelength from 300 to 800 nm, as shown in Fig. 4. Within the visible light region the refraction index of these films ranges mainly from 2 to 2.5, and their extinction coefficients are very close to zero. These calculated optical constants decrease sharply for wavelength below 300 nm. The distribution of the refraction index and extinction coefficient is similar to those in Refs.[11] and [12].

In conclusion, thin TiO$_2$ films have been prepared on glass substrates by rf magnetron sputtering technique. The thin films show good optical quality and crystalline phase. A modified pointwise constrained optimization approach, double-step optimization, was used to extract the film thickness and optical constants. The new calculation method can save calculation time and enhance precision.

References